
 

 

 
Abstract 

 
This paper utilizes TensorFlow to train a deep 

convolutional neural network model with the MNIST 
dataset to obtain its accuracy. The first approach was to 
perform the experiment with a very simple model that yields 
a low accuracy of 91.86%. Hence, to improve the accuracy, 
a deep convolutional neural network was implemented and 
used to yield an accuracy of 99.27%. Throughout the 
experiment, the MNIST dataset was learned, softmax 
regressions were implemented, and basic machine learning 
model parameters were learned. 
 

1. Introduction 
Deep learning uses an artificial neural net that is 

composed of several levels arranged in a hierarchy to carry 
out machine learning processes. It has attracted a lot of 
attention recently because it is particularly good at 
analyzing data and has the potential to be very useful for 
real-world application [3]. After a model was trained, one 
of these asset is to be able to classify and predict certain 
classes or objects within a dataset. For this experiment, the 
MNIST, a simple computer vision dataset, was used. It 
consisted of images of handwritten digits ranging from 0 to 
9 saved as a Python list of unsigned bytes. The labels are 
also in a Python array of unsigned bytes. Hence, several 
lines of code saved in “showImage.py” was ran to display 
some random numbers in the dataset as shown below. 

 
 
 
 
 
 
 
 

Figure 1: Images in the MNIST dataset 
 
The dataset also includes the label for each image, which 
provides information as to what digit corresponds to the 
handwritten images. For example, in Figure 1, the labels are 
8, 7, and 9 respectively. 
 

In this experiment, a model, called the softmax 

regression, was trained to look at the images and predict 
what digits they are. A function was created to be the model 
to recognize the digits by having it look over hundreds or 
even thousands of these examples inside the MNIST 
dataset. This was carried out by running a TensorFlow 
session and the model’s accuracy compared with the 
original dataset will be the output of the session. 

 

2. Methods 

2.1. MNIST Dataset 

The MNIST data, short for Modified National Institute 
of Standards and Technology, was obtained from a website 
hosted by Yann LeCun [4]. The dataset has three different 
parts. The first part contains 55,000 data points of training 
data called “mnist.train”, the second contains 10,000 points 
of test data called “mnist.test”, and the third 5,000 points of 
validation data called “mnist.validation”. Each image in the 
dataset is 28 pixels by 28 pixels flattened with 784 values 
representing each pixel’s intensity of which darkest means 
that there is a huge correlation that the digit occupies that 
specific index in the array. In Figure 2 below, a random 
digit was pulled out by running “plotVisual.py”. As can be 
seen from the figure, the image has a pre-defined label 8 
corresponding to the image resembling a hand-written 
number 8 shown by the dark colored pixel. 
 
 
 
 
 
 
 
 
 
 
 
Figure 2: Representing an image as a matrix of pixel’s intensity 

 
The array was flattened to a vector containing 784 

numbers obtained from multiplying the array dimensions 
(28 and 28). The result will be a tensor (an n-dimensional 
array) called the “mnist.train.images” and will have a shape 
of [55000, 784]. The first dimension, of maximum size 

 
Deep Learning with PyTorch 

 
Patrick Tirtapraja 
Purdue University 
ptpraja@purdue.edu 

 
 



 

 

55,000, represents the index of the specific image used in 
the dataset and the second dimension, of maximum size 
784, represents the index of the pixel in the specific image. 
As mentioned above, the entry in the tensor is a pixel 
intensity between 0 and 1 for a particular pixel in the image.  

Within the MNIST dataset, each image has its own 
corresponding label of a number between 0 and 9 to 
represent the number that corresponds to the image. The 
labels were used as a “one-hot vector” which is a vector that 
has a value of 0 in most of its dimensions, and 1 in a single 
dimension. The nth digit will be represented as a vector with 
a value 1 in the nth dimension. For example, the number 5 
will be represented as [0, 0, 0, 0, 1, 0, 0, 0, 0, 0] and 7 will 
be represented as [0, 0, 0, 0, 0, 0, 1, 0, 0, 0]. 

2.2.  Softmax Regressions 

Softmax regression is a natural model where it has the 
ability to assign the probability of how close an object is in 
being one of several things and represented this probability 
between a value of 0 and 1. The softmax regression carried 
out two steps. The first one added up the evidence of an 
input being in certain classes and the second converts that 
evidence into its corresponding probability value. The 
evidence was added up by calculating the weighted sum of 
the pixel intensity on how close it correlates to a certain 
class, in this case, a number. The weight is positive if the 
evidence is in favor of the image being in the class and 
negative if it does not. 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Representation of weights a model learns for the ten 
classes: red as positive weights, blue as negative weights 

 
Figure 3 shows an imagery of how the model learns all of 
the ten different classes. The blue coloring represents 
negative weights, and red represents the positive weights. 
An additional evidence was also used, called the bias. A 
bias can be positive or negative and a large bias can lead to 
high output correlations [5]. The evidence for a class 𝑖 given 
an input 𝑥 can be represented as (1): 
 

evidence) =+𝑊), 𝑥. + 𝑏).
.

(1) 

 

Where 𝑊) is the weight and 𝑏) is the bias for class 𝑖. Indices 
𝑗 represent the indices of the pixel location in the input 
image. Since the probability distribution over 10 cases was 
desired, a “softmax” function was used to serve as an 
activation function to shape the output of the initial linear 
function to the desired distribution. The softmax function 
was used to convert the tallied evidence to the predicted 
probabilities demonstrated by the following equation (2): 
 

𝑦 = softmax(evidence) (2) 
Where 𝑦 is the predicted probabilities where the softmax 
function itself can be represented with equation (3) below. 
 
 

softmax(𝑥)) = normalize(exp(𝑥)))	 (3) 

									=
exp	(𝑥))
∑ exp	(𝑥.).

 

 
The softmax exponentiates its input first then normalizes 

them. This means that more unit of evidence increases the 
weight given to any hypothesis significantly while one less 
unit of evidence does the opposite. Since no hypothesis has 
zero or negative weights, given that there is significant 
evidence that an input is a specific class, the certainty will 
be amplified by the softmax function. The weights were 
then normalized so that it adds up to one to form a valid 
probability distribution. 
 

For each output, softmax was applied to the weighted 
sum of input 𝑥 added with a bias. This can be represented 
as equation (4) below. 

 
𝑦 = softmax(𝑊𝑥 + 𝑏) (4) 

 
 With increased training size, the weights will change as 
well, enabling the model to classify certain classes with 
higher certainty. 

3. Experiments 

3.1. Regression Implementation 

To start the implementation of the softmax regression, 
TensorFlow was first imported as tf. A symbolic variable, 
x, was used as a placeholder, to be given an input when 
TensorFlow was ran. The placeholder will be able to take 
in any number of MNIST images representaed as a 2-D 
tensor of floating-point numbers with shape [None, 784]. 
None means that the first dimension can be of any length 
and 784 is the dimension of the flatted vector of the images. 
TensorFlow’s Variable is a tensor that can be modified and 
is in TensorFlow’s interacting operations. The weight, W, 
and bias, b, was created as a Variable by giving tf.Variable 
the initial value of each Variable. They are both initialized 



 

 

as tensors full of zeros as the value will get modified as the 
model gets trained. 
 
The model was implemented with the following line of 
code: 

y = tf.nn.softmax(tf.matmul(x, W) + b) 
 
where matmul is the multiplication function of TensorFlow. 
The softmax was then applied by using tf.nn.softmax to the 
product of W and x in addition with b. 

3.2. Training 

The cost or loss of the model represents how far the 
model is from the desired outcome. For better results, it is 
important to minimize the error in the model obtaining a 
smaller loss value. To calculate the loss of a model, a 
function called “cross-entropy” was used represented as the 
equation (5) below. 

𝐻GH(𝑦) =+𝑦)I log(𝑦))
)

(5) 

 
Where 𝑦 is the predicted probability distribution, and 𝑦′ 

is the true distribution represented as a one-hot vector with 
labels of the digit. This was then implemented by first 
adding a new placeholder to represent the correct answers 
𝑦)I. Then the cross entropy was calculated by implementing 
the above equation where the mean over all the examples in 
the batch is going to be calculated. TensorFlow uses the 
backpropagation algorithm to determine how the different 
variables affect the losses that wanted to be minimized. A 
gradient descent optimizer algorithm was then applied to 
modify the variables to reduce such losses. Each time 
TensorFlow was run, it does a step of gradient descent 
training, which tweaked the variables slightly to reduce the 
losses. Hence, the more frequent the training step was 
performed, the more times the variables got modified to 
reduce the losses. 

3.3. Evaluation 

To determine how well the model has performed, a check 
was performed to determine if the predictions matches the 
truth. This was done by using tf.argmax, a function that 
gives the index of the highest entry in a tensor along a given 
axis. For example, tf.argmax(y, 1) is the label the model 
thinks is the right class for a given input while tf.argmax(y_, 
1) is the actual correct label. The check was performed by 
applying the following line of equation code: 
 
correction_prediction = tf.equal(tf.argmax(y, 1), 
tf.argmax(y_, 1)) 
 
which in turn gives a list of Booleans converted to 1’s 
(True) and 0’s (False). The average value was casted as a 
floating point number and the average value was taken. 

 
With the simple implementation of the softmax 

regression and running the training step 1000 times, an 
accuracy of 91.86%. The number of iterations affects the 
accuracy as well. An accuracy of 92.23% was obtained the 
training step was run 10,000 times. 

3.4. Multilayer Convolutional Network 

However, obtaining merely 92% on the MNIST dataset 
was below the known standard. Hence, one way to obtain a 
more accurate representation was to use a convolutional 
neural network. ReLU neurons were used and they were 
initialized with a slightly positive bias to avoid “dead 
neurons”. To achieve better results, a three layer 
convolutional network model was used. The convolutions 
used a stride of one with zero padding so that the output 
would have the same size as the input. The pooling used 
was max pooling over 2x2 blocks. 

 
The first convolutional layer consist of convolution 

followed by max pooling. It computed 32 features for each 
5x5 patch and its weight tensor have a shape of [5, 5, 1, 32]. 
Dimensions one and two are the patch size, the third is the 
number of input channel, and the last is the number of 
output channels. To apply this, the input, 𝑥, was first 
reshaped to a 4d tensor by applying the following code: 
 

x_image = tf.reshape(x, [-1, 28, 28, 1]) 
 
 where the second and third dimensions are the image 
width and height. It is the convolve with a weight tensor, 
added with the bias, and applied with the ReLU function, 
before performing the max pool. By this point, the image 
was reduced to the size of 14x14. 
 
 The second convolutional layer have 64 features for each 
5x5 patch. This further reduced the size of the image to 7x7 
and a fully-connected layer with 1024 neurons were added 
to allow processing of the entire image. The tensor was then 
reshaped from the pooling layer into a batch of vectors, 
multiplied with the weight, added with the bias, before a 
ReLU was applied. Dropout was also applied to reduce 
overfitting. However, since the neural network is not too 
deep, the absence of a dropout will not lead to significant 
changes on the final result. A final layer, similar to the 
previous model of softmax regression, was then added. 
 
 The model was then ran for 20,000 training iterations and 
an accuracy of 99.27% was obtained. 

4. Conclusion 
In conclusion, this experiment was a great 

introduction to TensorFlow, some of its standard 
libraries, implementation, and terms. It has also 



 

 

introduced some familiarity with the MNIST dataset 
and the basics of how to train a model of neural 
network, both deep, or simply just by modifying the 
weights and loss values, to classify a certain image to its 
corresponding class. It was discovered that by 
increasing the number of iterations, the accuracy of 
classification may improve slightly. Although the 
simple model was able to give an accuracy of close to 
92%, this value is a pretty low score in terms of 
accuracy using an MNIST dataset. Hence, a three-
layered convolutional network was used to improve the 
results. This yielded a much better result of around 
99.27%. 

 

5. References 
[1] “MNIST for ML Beginners | TensorFlow, 

www.tensorflow.org/versions/r1.1/get_started/mnist/beginn
ers.  

[2] “Deep MNIST for Experts |  TensorFlow, 
https://www.tensorflow.org/versions/r1.1/get_started/mnist/
pros.  

[3] Murnane, Kevin. “What Is Deep Learning And How Is It 
Useful?” Forbes, Forbes Magazine, 5 Apr. 2016, 
https://www.forbes.com/sites/kevinmurnane/2016/04/01/wh
at-is-deep-learning-and-how-is-it-useful/#489c92c1d547. 

[4] “THE MNIST DATABASE.” MNIST Handwritten Digit 
Database, Yann LeCun, Corinna Cortes and Chris Burges, 
yann.lecun.com/exdb/mnist/. 

[5] Collis, Jaron. “Glossary of Deep Learning: Bias – Deeper 
Learning – Medium.” Medium, Deeper Learning, 14 Apr. 
2017, medium.com/deeper-learning/glossary-of-deep-
learning-bias-cf49d9c895e2. 
 

 
 


